The Number of Countable Models in a Grothendieck Toposes

Nathanael Leedom Ackerman University of California, Berkeley

2010 International Category Theory Conference

at University of Genova, Italy

- Results
- 2 Background
- 3 Countability
- Space of Models
- Number of Countable Models

- Results
- 2 Background
- 3 Countability
- 4 Space of Models
- 5 Number of Countable Models

Vaught's Conjecture

In 1961 Vaught a question:

Can it be proved, without the use of the continuum hypothesis, that there exists a complete theory having exactly \aleph_1 non-isomorphic denumerable models?

This is one of the oldest open problems in model theory and the statement that it has a negative answer has become known as **Vaught's Conjecture**. I.e. that

Conjecture (Vaught Conjecture)

Every first order theory T one of the following holds:

- T has at most \aleph_0 many countable models.
- T has a perfect set of countable models.

Morley's Theorem

One of the most important results in the study of Vaught's conjecture is:

Theorem (Morley)

For each countable language L and each sentence $T \in \mathcal{L}_{\omega_1,\omega}(L)$ one of the following holds:

- T has at most ℵ₁ many countable models.
- T has a perfect set of countable models.

This result expanded scope of Vaught's conjecture from first order logic to sentences of $\mathcal{L}_{\omega_1,\omega}$.

In this talk we discuss the following generalization of Morley's Theorem:

Theorem (A)

Assuming Π_3^1 -determinacy, whenever (C, J_C) is a countable site, L is a countable language and $T \in \mathcal{L}_{\omega_1,\omega}(L)$ is a sentence, one of the following holds:

- T has at most \aleph_1 many countable models in the category of sheaves on (C, J_C) .
- T has a perfect set of countable models in the category of sheaves on (C, J_C) .

- Results
- 2 Background
- 3 Countability
- 4 Space of Models
- 5 Number of Countable Models

Countable Sites

Definition

We say a site (C, J_C) is *countable* if

- C is a countable category (i.e. $|morph(C)| \leq \omega$).
- $J_C(A)$ is countable for each object A of C.

From now on

- (C, J_C) will be a countable site.
- $Sep(C, J_C)$ is the category of separated presheaves on (C, J_C) .
- $Sh(C, J_C)$ is the category of sheaves on (C, J_C) .

Definition of $\mathcal{L}_{\omega_1,\omega}(L)$

We let L be a countable multi-sorted language.

Definition

Recall that $\mathcal{L}_{\omega_1,\omega}(L)$ is the smallest collection of formulas such that

- $L \subseteq \mathcal{L}_{\omega_1,\omega}(L)$.
- $\mathcal{L}_{\omega_1,\omega}(L)$ is closed under negation (\neg) .
- $\mathcal{L}_{\omega_1,\omega}(L)$ is closed under finite existential $(\exists x)$ and universal $(\forall x)$ quantification.
- $\mathcal{L}_{\omega_1,\omega}(L)$ is closed under infinite disjunctions (\bigvee) and conjunctions (\bigwedge) so long as each subformula contains only a finite number of free variables.

Models in a Category

Definition

A model M of L in a category X consists of the following:

- For each sort $S \in L$ there is an object $S^M \in \operatorname{obj}(X)$
- For each relation $R \in L$ of signature (S_1, \ldots, S_n) there is a subobject $R^M \subseteq S_1^M \times \cdots \times S_n^M$
- For each function symbol $f \in L$ of signature $(S_1, \ldots, S_n) \to S$ there is a morphism $f^M : S_1^M \times \cdots \times S_n^M \to S^M$

Models in a Category

Definition

A model M of L in a category X consists of the following:

- For each sort $S \in L$ there is an object $S^M \in \operatorname{obj}(X)$
- For each relation $R \in L$ of signature (S_1, \ldots, S_n) there is a subobject $R^M \subseteq S_1^M \times \cdots \times S_n^M$
- For each function symbol $f \in L$ of signature $(S_1, \ldots, S_n) \to S$ there is a morphism $f^M : S_1^M \times \cdots \times S_n^M \to S^M$

We will be most interested in models in the categories $Sep(C, J_C)$ and $Sh(C, J_C)$.

Lemma

The sheafification functor \mathbf{a} : $Sep(C, J_C) \rightarrow Sh(C, J_C)$ extends to a map from models in $Sep(C, J_C)$ to models in $Sh(C, J_C)$ (by applying \mathbf{a} to each component of the model).

- Results
- 2 Background
- 3 Countability
- Space of Models
- 5 Number of Countable Models

Countability of Models

Definition

A model M of the (countable) language L in $Sh(C, J_C)$ is countable if, for each sort S, S^M is a countable sheaf.

Of course for this to make sense we need to define what a countable sheaf is.

Countability of Models

Definition

A model M of the (countable) language L in $Sh(C, J_C)$ is countable if, for each sort S, S^M is a countable sheaf.

Of course for this to make sense we need to define what a countable sheaf is.

Unfortunately, unlike in case of "countable sets", there are four distinct notions which have claim to the name of "countable sheaf".

Definition of Purely Countable Sheaves

Definition

A sheaf A over (C, J_C) is *purely countable* if A(x) is countable for each $x \in \text{obj}(C)$.

In other words A is purely countable if it is isomorphic to a sheaf which, when expressed as a set, has countable transitive closure.

Unfortunately purely countable sheaves lack some properties we would hope a notion of countability would have. Such as:

Lemma

There is a site (C, J_C) such that the natural number object in $Sh(C, J_C)$ is not purely countable in any standard model of set theory.

Countably Generated Sheaves

Definition

A sheaf A is countable generated if there is an A^* such that

- A^* is a separated presheaf for (C, J_C) .
- $A^*(x)$ is countable for each object x of C.
- The sheafification of A^* is isomorphic to A.

A countably generated sheaf is a direct analog of a separable metric space (i.e. a metric space with a countable dense subset).

Lemma

If C has only countably many objects, then natural number object of $Sh(C, J_C)$ is countably generated.

Lemma

For every sheaf A there is a forcing extension in which A is countably generated.

Monic Countable and Epi Countable

The next two notions of countable are are preserved under arbitrary equivalences of categories. Let $\mathbb{N} = \coprod_{i \in \omega} 1$ be a natural number object in $Sh(C, J_C)$.

Definition

A sheaf A is monic countable if there is a monomorphism

$$m:A\rightarrowtail\mathbb{N}$$

Definition

A sheaf A is epi countable if there is an epimorphism

$$e: \mathbb{N} \twoheadrightarrow A$$

Countability and Countably Generated

Note that being countably generated is the most general of these four notions and we have the following:

Lemma

If A is a purely countable sheaf then A is countably generated.

Lemma

If A is a monic countable or epi countable sheaf then A is countably generated.

Proof.

This follows from the fact that (C, J_C) is a countable site.

- Results
- 2 Background
- 3 Countability
- Space of Models
- 5 Number of Countable Models

Separated Presheaves and $\mathcal{L}_{\omega_1,\omega}$

$\mathsf{Theorem}$

For any language L there is a countable language L* and a sentence σ_L of $\mathcal{L}_{\omega_1,\omega}(L^*)$ such that:

- The category of set models of σ_L is equivalent to the category of models of L in $Sep(C, J_C)$.
- A model M in $Sh(C, J_C)$ is countably generated if and only if there is a model M^* in $Sep(C, J_C)$ such that
 - The image of M* under the equivalence in (1) is a countable model.
 - The sheafification of M* is isomorphic to M.

To simplify notation we won't distinguish between a model of L in $Sep(C, J_C)$ and the corresponding (set) model of σ_L .

Space of Countable Models

Definition

Let Str_{L^*} be the collection of (set) L^* models whose underlying set is ω along with the σ -algebra generated by sets of the form

$$\{M: M \models \varphi(n_1,\ldots,n_i), n_1,\ldots,n_i \in \omega, \varphi \in \mathcal{L}_{\omega_1,\omega}(L)\}$$

In particular Str_{L^*} is Borel isomorphic to 2^{ω} .

We let $Mod(\sigma_L) \subseteq Str_{L^*}$ be the (Borel) collection of those structures which satisfy σ_L .

Complexity of Countable Models

Now we can classify how "complicated" the space of countable models of a sentence of $\mathcal{L}_{\omega_1,\omega}(L)$ is.

Definition

Suppose $T \in \mathcal{L}_{\omega_1,\omega}(L)$ is a sentence. Define

• Pure(T) to be the collection of models $M \in Mod(\sigma_L)$ such that the sheafification of M is $purely \ countable$ and satisfies T.

We also define Gen(T), Monic(T), and Epi(T) similarly except with *purely countable* replaced by *countably generated*, *monic countable* and *epi countable* respectively.

Theorem

For every sentence $T \in \mathcal{L}_{\omega_1,\omega}(L)$, Pure(T), Gen(T), Monic(T) and Epi(T) are Σ_2^1 subsets of $Mod(\sigma_L)$

- Results
- 2 Background
- Countability
- Space of Models
- **5** Number of Countable Models

Complexity of Equivalence Relation

Definition

If $M, N \in Mod(\sigma_L)$ say $M \equiv_L N$ if the sheafification of M is isomorphic to the sheafification of N.

In particular, counting the number of "countable" models in $Sh(C, J_C)$ corresponds to counting the number of equivalence classes under \equiv_L .

Complexity of Equivalence Relation

Definition

If $M, N \in Mod(\sigma_L)$ say $M \equiv_L N$ if the sheafification of M is isomorphic to the sheafification of N.

In particular, counting the number of "countable" models in $Sh(C, J_C)$ corresponds to counting the number of equivalence classes under \equiv_L .

Lemma

 \equiv_L is a Σ_2^1 -equivalence relation on $Mod(\sigma_L)$.

and if we restrict to purely countable models we get

Lemma

For every sentence $T \in \mathcal{L}_{\omega_1,\omega}(L)$, the relation $M \equiv_L N$ on Pure(T) is a Σ_1^1 -relation.

Number of Purely Countable Models

Corollary

For every sentence $T \in \mathcal{L}_{\omega_1,\omega}(L)$ one of the following hold:

- There are at most \aleph_1 many purely countable models of T in $Sh(C, J_C)$.
- There is a perfect set of purely countable models of T in $Sh(C, J_C)$.

Proof.

Because under ZF every Σ_1^1 equivalence relation (on a Σ_2^1 set of reals) has either a perfect set of equivalence classes or at most \aleph_1 many equivalence classes.

Σ_2^1 -Equivalence Relations

Unfortunately the axioms of ZF aren't, in general, sufficient to determine the number of equivalence classes of a Σ_2^1 relation. But, if we assume Π_3^1 -determinacy then we have the following result:

Theorem (Harrington, Sami, Shelah)

Under Π_3^1 determinacy, if a Σ_2^1 equivalence relation on a Σ_2^1 subset of $Mod(\sigma_L)$ does not have a perfect set of equivalence classes, it has at most \aleph_1 many equivalence classes.

Number of Countable Models

Corollary

Assuming Π_3^1 determinacy, for every sentence $T \in \mathcal{L}_{\omega_1,\omega}(L)$ one of the following hold:

- There are at most \aleph_1 many countably generated models of T in $Sh(C, J_C)$.
- There is a perfect set of countably generated models of T in $Sh(C, J_C)$.

The same holds for monic countable and epi countable models of T.

Generalized Vaught's Conjecture

Definition

A site (C, J_C) has the *Vaught Property* if for each of the four notions of countable and every sentence $T \in \mathcal{L}_{\omega_1,\omega}(L)$ one of the following two holds:

- There is a perfect set of countable models of T in $Sh(C, J_C)$.
- There are at most \aleph_0 many countable models of T in $Sh(C, J_C)$.

Conjecture (Sheaf Vaught's Conjecture)

Every countable site (C, J_C) has the Vaught property.

Example of Vaught Property

Example

Consider the site $(C_{\omega}, J_{C_{\omega}})$ where

- C_{ω} is the set $\{0,1,2,\dots\}=\omega$ considered as a category.
- $J_{C_{\omega}}(n)$ is trivial for all $n \in \omega$.

Then for every sentence $T \in \mathcal{L}_{\omega_1,\omega}(L)$ the one of the following holds

- T has at most one countable (set) model and hence at most one countable model in $Sh(C_{\omega}, J_{C_{\omega}})$ (for any of the notions of countable).
- T has at least two countable (set) models and hence a perfect set of countable models in $Sh(C_{\omega}, J_{C_{\omega}})$ (for any of the notions of countable).

Hence $(C_{\omega}, J_{C_{\omega}})$ has the Vaught property.

Thank You