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Vaught’s Conjecture

In 1961 Vaught a question:

Can it be proved, without the use of the continuum
hypothesis, that there exists a complete theory having
exactly ℵ1 non-isomorphic denumerable models?

This is one of the oldest open problems in model theory and the
statement that it has a negative answer has become known as
Vaught’s Conjecture. I.e. that

Conjecture (Vaught Conjecture)

Every first order theory T one of the following holds:

T has at most ℵ0 many countable models.

T has a perfect set of countable models.



Morley’s Theorem

One of the most important results in the study of Vaught’s
conjecture is:

Theorem (Morley)

For each countable language L and each sentence T ∈ Lω1,ω(L)
one of the following holds:

T has at most ℵ1 many countable models.

T has a perfect set of countable models.

This result expanded scope of Vaught’s conjecture from first order
logic to sentences of Lω1,ω.



Goal

In this talk we discuss the following generalization of Morley’s
Theorem:

Theorem (A)

Assuming Π1
3-determinacy, whenever (C , JC ) is a countable site, L

is a countable language and T ∈ Lω1,ω(L) is a sentence, one of the
following holds:

T has at most ℵ1 many countable models in the category of
sheaves on (C , JC ).

T has a perfect set of countable models in the category of
sheaves on (C , JC ).
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Countable Sites

Definition

We say a site (C , JC ) is countable if

C is a countable category (i.e. |morph(C )| ≤ ω).

JC (A) is countable for each object A of C .

From now on

(C , JC ) will be a countable site.

Sep(C , JC ) is the category of separated presheaves on (C , JC ).

Sh(C , JC ) is the category of sheaves on (C , JC ).



Definition of Lω1,ω(L)

We let L be a countable multi-sorted language.

Definition

Recall that Lω1,ω(L) is the smallest collection of formulas such
that

L ⊆ Lω1,ω(L).

Lω1,ω(L) is closed under negation (¬).

Lω1,ω(L) is closed under finite existential (∃x) and universal
(∀x) quantification.

Lω1,ω(L) is closed under infinite disjunctions (
∨

) and
conjunctions (

∧
) so long as each subformula contains only a

finite number of free variables.



Models in a Category

Definition

A model M of L in a category X consists of the following:

For each sort S ∈ L there is an object SM ∈ obj(X )

For each relation R ∈ L of signature (S1, . . . ,Sn) there is a
subobject RM ⊆ SM

1 × · · · × SM
n

For each function symbol f ∈ L of signature (S1, . . . ,Sn)→ S
there is a morphism f M : SM

1 × · · · × SM
n → SM

We will be most interested in models in the categories Sep(C , JC )
and Sh(C , JC ).

Lemma

The sheafification functor a : Sep(C , JC )→ Sh(C , JC ) extends to
a map from models in Sep(C , JC ) to models in Sh(C , JC ) (by
applying a to each component of the model).
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Countability of Models

Definition

A model M of the (countable) language L in Sh(C , JC ) is
countable if, for each sort S , SM is a countable sheaf.

Of course for this to make sense we need to define what a
countable sheaf is.

Unfortunately, unlike in case of “countable sets”, there are four
distinct notions which have claim to the name of “countable
sheaf”.
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Definition of Purely Countable Sheaves

Definition

A sheaf A over (C , JC ) is purely countable if A(x) is countable for
each x ∈ obj(C ).

In other words A is purely countable if it is isomorphic to a sheaf
which, when expressed as a set, has countable transitive closure.

Unfortunately purely countable sheaves lack some properties we
would hope a notion of countability would have. Such as:

Lemma

There is a site (C , JC ) such that the natural number object in
Sh(C , JC ) is not purely countable in any standard model of set
theory.



Countably Generated Sheaves

Definition

A sheaf A is countable generated if there is an A∗ such that

A∗ is a separated presheaf for (C , JC ).

A∗(x) is countable for each object x of C .

The sheafification of A∗ is isomorphic to A.

A countably generated sheaf is a direct analog of a separable
metric space (i.e. a metric space with a countable dense subset).

Lemma

If C has only countably many objects, then natural number object
of Sh(C , JC ) is countably generated.

Lemma

For every sheaf A there is a forcing extension in which A is
countably generated.



Monic Countable and Epi Countable

The next two notions of countable are are preserved under
arbitrary equivalences of categories. Let N =

∐
i∈ω 1 be a natural

number object in Sh(C , JC ).

Definition

A sheaf A is monic countable if there is a monomorphism

m : A � N

Definition

A sheaf A is epi countable if there is an epimorphism

e : N � A



Countability and Countably Generated

Note that being countably generated is the most general of these
four notions and we have the following:

Lemma

If A is a purely countable sheaf then A is countably generated.

Lemma

If A is a monic countable or epi countable sheaf then A is
countably generated.

Proof.

This follows from the fact that (C , JC ) is a countable site.
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Separated Presheaves and Lω1,ω

Theorem

For any language L there is a countable language L∗ and a
sentence σL of Lω1,ω(L∗) such that:

The category of set models of σL is equivalent to the category
of models of L in Sep(C , JC ).

A model M in Sh(C , JC ) is countably generated if and only if
there is a model M∗ in Sep(C , JC ) such that

The image of M∗ under the equivalence in (1) is a countable
model.
The sheafification of M∗ is isomorphic to M.

To simplify notation we won’t distinguish between a model of L in
Sep(C , JC ) and the corresponding (set) model of σL.



Space of Countable Models

Definition

Let StrL∗ be the collection of (set) L∗ models whose underlying set
is ω along with the σ-algebra generated by sets of the form

{M : M |= ϕ(n1, . . . , ni ), n1, . . . , ni ∈ ω, ϕ ∈ Lω1,ω(L)}

In particular StrL∗ is Borel isomorphic to 2ω.

We let Mod(σL) ⊆ StrL∗ be the (Borel) collection of those
structures which satisfy σL.



Complexity of Countable Models

Now we can classify how “complicated” the space of countable
models of a sentence of Lω1,ω(L) is.

Definition

Suppose T ∈ Lω1,ω(L) is a sentence. Define

Pure(T ) to be the collection of models M ∈ Mod(σL) such
that the sheafification of M is purely countable and satisfies
T .

We also define Gen(T ), Monic(T ), and Epi(T ) similarly except
with purely countable replaced by countably generated, monic
countable and epi countable respectively.

Theorem

For every sentence T ∈ Lω1,ω(L), Pure(T ),Gen(T ),Monic(T ) and
Epi(T ) are Σ1

2 subsets of Mod(σL)
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Complexity of Equivalence Relation

Definition

If M,N ∈ Mod(σL) say M ≡L N if the sheafification of M is
isomorphic to the sheafification of N.

In particular, counting the number of “countable” models in
Sh(C , JC ) corresponds to counting the number of equivalence
classes under ≡L.

Lemma

≡L is a Σ1
2-equivalence relation on Mod(σL).

and if we restrict to purely countable models we get

Lemma

For every sentence T ∈ Lω1,ω(L), the relation M ≡L N on
Pure(T ) is a Σ1

1-relation.
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Number of Purely Countable Models

Corollary

For every sentence T ∈ Lω1,ω(L) one of the following hold:

There are at most ℵ1 many purely countable models of T in
Sh(C , JC ).

There is a perfect set of purely countable models of T in
Sh(C , JC ).

Proof.

Because under ZF every Σ1
1 equivalence relation (on a Σ1

2 set of
reals) has either a perfect set of equivalence classes or at most ℵ1
many equivalence classes.



Σ1
2-Equivalence Relations

Unfortunately the axioms of ZF aren’t, in general, sufficient to
determine the number of equivalence classes of a Σ1

2 relation.
But, if we assume Π1

3-determinacy then we have the following
result:

Theorem (Harrington, Sami, Shelah)

Under Π1
3 determinacy, if a Σ1

2 equivalence relation on a Σ1
2 subset

of Mod(σL) does not have a perfect set of equivalence classes, it
has at most ℵ1 many equivalence classes.



Number of Countable Models

Corollary

Assuming Π1
3 determinacy, for every sentence T ∈ Lω1,ω(L) one of

the following hold:

There are at most ℵ1 many countably generated models of T
in Sh(C , JC ).

There is a perfect set of countably generated models of T in
Sh(C , JC ).

The same holds for monic countable and epi countable models of
T .





Generalized Vaught’s Conjecture

Definition

A site (C , JC ) has the Vaught Property if for each of the four
notions of countable and every sentence T ∈ Lω1,ω(L) one of the
following two holds:

There is a perfect set of countable models of T in Sh(C , JC ).

There are at most ℵ0 many countable models of T in
Sh(C , JC ).

Conjecture (Sheaf Vaught’s Conjecture)

Every countable site (C , JC ) has the Vaught property.



Example of Vaught Property

Example

Consider the site (Cω, JCω) where

Cω is the set {0, 1, 2, . . . } = ω considered as a category.

JCω(n) is trivial for all n ∈ ω.

Then for every sentence T ∈ Lω1,ω(L) the one of the following
holds

T has at most one countable (set) model and hence at most
one countable model in Sh(Cω, JCω) (for any of the notions of
countable).

T has at least two countable (set) models and hence a perfect
set of countable models in Sh(Cω, JCω) (for any of the notions
of countable).

Hence (Cω, JCω) has the Vaught property.
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